A visco-elastic theory of mechanoreceptor adaptation
نویسندگان
چکیده
منابع مشابه
An Elastic-Visco-Plastic Damage Model : From Theory to Application
An energy-based two-variable damage theory is applied to Bodner's model. It gives an elastic-viswplastic damage model. Some theoretical details are descnied in this paper. The parameters identification procedure is discussed and a complete set of parameters for an aluminium is presented. Numerical modelling of the laboratoly tests are used to validate the model. An industrial aeronautic rod fab...
متن کامل2 A Computational Model for Visco - Elastic
Particle diiusion in rotating drums is studied via computer simulations using a full 3-D model which does not involve any arbitrary input parameters. The diiusion coeecient for single-component systems agree qualitatively with previous experimental results. On the other hand, the diiusion coeecient for two-component systems is shown to be a highly nonlinear function of the rotation velocity. It...
متن کاملMin-max Game Theory for Elastic and Visco-Elastic Fluid Structure Interactions
We present the salient features of a min-max game theory developed in the context of coupled PDE's with an interface. Canonical applications include linear fluid-structure interaction problem modeled by Oseen's equations coupled with elastic waves. We shall consider two models for the structures: elastic and visco-elastic. Control and disturbance are allowed to act at the interface between the ...
متن کاملMathematical analysis of thermo-visco-elastic models
Motywacją do badań nad równaniami opisującymi odkształcenia termo-lepko-sprężyste jest potrzeba lepszego opisu procesów zachodzących w różnych materiałach oraz zbudowania lepszych modeli ich zachowania pod wpływem działania sił zewnętrznych. Wraz z rozwojem techniki zdobywamy głębszą wiedzę na temat różnych tworzyw. Pozwala nam to na tworzenie coraz bardziej poprawnych modeli opisujących zachow...
متن کاملHomogenization of nonlinear visco-elastic composites
Quasi-static processes in nonlinear visco-elastic materials of solid-type are here represented by the system: σ −B(x) : ∂ε ∂t ∈ β(ε, x), −divσ = f , (∗) coupled with initial and boundary conditions. Here σ denotes the stress tensor, ε the linearized strain tensor, B(x) the viscosity tensor, β(·, x) a (possibly multi-valued) maximal monotone mapping, and f an applied load. Existence and uniquene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Journal of Physiology
سال: 1966
ISSN: 0022-3751
DOI: 10.1113/jphysiol.1966.sp008074